libcbor¶
Documentation for version 0.4.0, updated on Jan 02, 2017.
Overview¶
libcbor is a C library for parsing and generating CBOR, the general-purpose schema-less binary data format.
- Main features
- Complete RFC conformance [1]
- Robust C99 implementation
- Layered architecture offers both control and convenience
- Flexible memory management
- No shared global state - threading friendly [2]
- Proper handling of UTF-8
- Full support for streams & incremental processing
- Extensive documentation and test suite
- No runtime dependencies, small footprint
[1] | See RFC conformance |
[2] | With the exception of custom memory allocators (see Memory management and reference counting) |
Contents¶
Getting started¶
Pre-built Linux packages are distributed from the libcbor website. For other platforms, you will need to compile it from source.
Building & installing libcbor¶
- Prerequisites:
- C99 compiler
- CMake 2.8 or newer (might also be called
cmakesetup
,cmake-gui
orccmake
depending on the installed version and system) - C build system CMake can target (make, Apple Xcode, MinGW, ...)
Note
As of May 2015, not even the 2015 release candidate of Visual Studio supports C99. While CMake will be happy to generate a VS solution that you can play with, libcbor currently cannot be compiled using the MSVC toolchain. ICC, GCC under Cygwin, and MinGW’s GCC will all work. The MinGW build process is described below.
Configuration options
A handful of configuration flags can be passed to cmake. The following table lists libcbor compile-time directives and several important generic flags.
Option | Meaning | Default | Possible values |
CMAKE_C_COMPILER |
C compiler to use | cc |
gcc , clang , clang-3.5 , ... |
CMAKE_INSTALL_PREFIX |
Installation prefix | System-dependent | /usr/local/lib , ... |
HUGE_FUZZ |
Fuzz test with 8GB of data | OFF |
ON , OFF |
SANE_MALLOC |
Assume malloc will refuse unreasonable allocations |
OFF |
ON , OFF |
COVERAGE |
Generate test coverage instrumentation | OFF |
ON , OFF |
The following configuration options will also be defined as macros[#]_ in <cbor/common.h>
and can therefore be used in client code:
Option | Meaning | Default | Possible values |
CBOR_CUSTOM_ALLOC |
Enable custom allocator support | OFF |
ON , OFF |
CBOR_PRETTY_PRINTER |
Include a pretty-printing routine | ON |
ON , OFF |
CBOR_BUFFER_GROWTH |
Factor for buffer growth & shrinking | 2 |
Decimals > 1 |
[1] | ON & OFF will be translated to 1 and 0 using cmakedefine. |
If you want to pass other custom configuration options, please refer to http://www.cmake.org/Wiki/CMake_Useful_Variables.
Building using make
CMake will generate a Makefile and other configuration files for the build. As a rule of thumb, you should configure the build outside of the source tree in order to keep different configurations isolated. If you are unsure where to execute the build, just use a temporary directory:
cd $(mktemp -d /tmp/cbor_build.XXXX)
Now, assuming you are in the directory where you want to build, execute the following to configure the build and run make
cmake -DCMAKE_BUILD_TYPE=Release path_to_libcbor_dir
make cbor cbor_shared
Both the shared (libcbor.so
) and the static (libcbor.a
) libraries should now be in the src
subdirectory.
In order to install the libcbor headers and libraries, the usual
make install
is what your’re looking for. Root permissions are required on most systems when using the default installation prefix.
Portability
libcbor is highly portable and works on both little- and big-endian systems regardless of the operating system. After building on an exotic platform, you might wish to verify the result by running the test suite. If you encounter any problems, please report them to the issue tracker.
libcbor is known to successfully work on ARM Android devices. Cross-compilation is possible with arm-linux-gnueabi-gcc
.
Linking with libcbor¶
If you include and linker paths include the directories to which libcbor has been installed, compiling programs that uses libcbor requires no extra considerations.
You can verify that everything has been set up properly by creating a file with the following contents
#include <cbor.h>
#include <stdio.h>
int main(int argc, char * argv[])
{
printf("Hello from libcbor %s\n", CBOR_VERSION);
}
and compiling it
cc hello_cbor.c -lcbor -o hello_cbor
libcbor also comes with pkg-config support. If you install libcbor with a custom prefix, you can use pkg-config to resolve the headers and objects:
cc $(pkg-config --cflags libcbor) hello_cbor.c $(pkg-config --libs libcbor) -o hello_cbor
MinGW build instructions¶
- Prerequisites:
- MinGW
- CMake GUI
First of all, create a folder that will be used for the output. For this demonstration, we will use cbor_out
. Start CMake and select the source path and the destination folder.

Then hit the ‘Configure’ button. You will be prompted to select the build system:

Choose MinGW and confirm.
Note
If you select Visual Studio at this point, a MSVC project will be generated for you. This is useful if you just want to browse through the source code.
You can then adjust the build options. The defaults will work just fine. Hit ‘Generate’ when you are done.

You can then adjust the build options. The defaults will work just fine. Hit ‘Generate’ when you are done.
Open the shell, navigate to the output directory, and run mingw32-make cbor cbor_shared
.

libcbor will be built and your .dll
should be ready at this point

Feel free to also try building and running some of the examples, e.g. mingw32-make sort

Troubleshooting¶
cbor.h not found: The headers directory is probably not in your include path. First, verify the installation location by checking the installation log. If you used make, it will look something like
...
-- Installing: /usr/local/include/cbor
-- Installing: /usr/local/include/cbor/callbacks.h
-- Installing: /usr/local/include/cbor/encoding.h
...
Make sure that CMAKE_INSTALL_PREFIX
(if you provided it) was correct. Including the path path during compilation should suffice, e.g.:
cc -I/usr/local/include hello_cbor.c -lcbor -o hello_cbor
cannot find -lcbor during linking: Most likely the same problem as before. Include the installation directory in the
linker shared path using -R
, e.g.:
cc -Wl,-rpath,/usr/local/lib -lcbor -o hello_cbor
shared library missing during execution: Verify the linkage using ldd
, otool
, or similar and adjust the compilation directives accordingly:
⇒ ldd hello_cbor
linux-vdso.so.1 => (0x00007ffe85585000)
libcbor.so => /usr/local/lib/libcbor.so (0x00007f9af69da000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f9af65eb000)
/lib64/ld-linux-x86-64.so.2 (0x00007f9af6be9000)
compilation failed: If your compiler supports C99 yet the compilation has failed, please report the issue to the issue tracker.
Usage & preliminaries¶
Version information¶
libcbor exports its version using three self-explanatory macros:
CBOR_MAJOR_VERSION
CBOR_MINOR_VERSION
CBOR_PATCH_VERSION
The CBOR_VERSION
is a string concatenating these three identifiers into one (e.g. 0.2.0
).
In order to simplify version comparisons, the version is also exported as
#define CBOR_HEX_VERSION ((CBOR_MAJOR_VERSION << 16) | (CBOR_MINOR_VERSION << 8) | CBOR_PATCH_VERSION)
Since macros are difficult to work with through FFIs, the same information is also available through three uint8_t
constants,
namely
cbor_major_version
cbor_minor_version
cbor_patch_version
Headers to include¶
The cbor.h
header includes all the symbols. If, for any reason, you don’t want to include all the exported symbols,
feel free to use just some of the cbor/*.h
headers:
cbor/arrays.h
- Type 4 – Arrayscbor/bytestrings.h
- Type 2 – Byte stringscbor/callbacks.h
- Callbacks used for Decodingcbor/common.h
- Common utilities - always transitively includedcbor/data.h
- Data types definitions - always transitively includedcbor/encoding.h
- Streaming encoders for Encodingcbor/floats_ctrls.h
- Type 7 – Floats & control tokenscbor/ints.h
- Types 0 & 1 – Positive and negative integerscbor/maps.h
- Type 5 – Mapscbor/serialization.h
- High level serialization such ascbor_serialize()
cbor/streaming.h
- Home ofcbor_stream_decode()
cbor/strings.h
- Type 3 – UTF-8 stringscbor/tags.h
- Type 6 – Semantic tags
Using libcbor¶
If you want to get more familiar with CBOR, we recommend the cbor.io website. Once you get the grasp
of what is it CBOR does, the examples (located in the examples
directory) should give you a good feel of the API. The
API documentation should then provide with all the information you may need.
Creating and serializing items
#include "cbor.h"
#include <stdio.h>
int main(int argc, char * argv[])
{
/* Preallocate the map structure */
cbor_item_t * root = cbor_new_definite_map(2);
/* Add the content */
cbor_map_add(root, (struct cbor_pair) {
.key = cbor_move(cbor_build_string("Is CBOR awesome?")),
.value = cbor_move(cbor_build_bool(true))
});
cbor_map_add(root, (struct cbor_pair) {
.key = cbor_move(cbor_build_uint8(42)),
.value = cbor_move(cbor_build_string("Is the answer"))
});
/* Output: `length` bytes of data in the `buffer` */
unsigned char * buffer;
size_t buffer_size, length = cbor_serialize_alloc(root, &buffer, &buffer_size);
fwrite(buffer, 1, length, stdout);
free(buffer);
fflush(stdout);
cbor_decref(&root);
}
Reading serialized data
#include "cbor.h"
#include <stdio.h>
/*
* Reads data from a file. Example usage:
* $ ./examples/readfile examples/data/nested_array.cbor
*/
int main(int argc, char * argv[])
{
FILE * f = fopen(argv[1], "rb");
fseek(f, 0, SEEK_END);
size_t length = (size_t)ftell(f);
fseek(f, 0, SEEK_SET);
unsigned char * buffer = malloc(length);
fread(buffer, length, 1, f);
/* Assuming `buffer` contains `info.st_size` bytes of input data */
struct cbor_load_result result;
cbor_item_t * item = cbor_load(buffer, length, &result);
/* Pretty-print the result */
cbor_describe(item, stdout);
fflush(stdout);
/* Deallocate the result */
cbor_decref(&item);
fclose(f);
}
Using the streaming parser
#include "cbor.h"
#include <stdio.h>
#include <string.h>
/*
* Illustrates how one might skim through a map (which is assumed to have
* string keys and values only), looking for the value of a specific key
*
* Use the examples/data/map.cbor input to test this.
*/
const char * key = "a secret key";
bool key_found = false;
void find_string(void * _ctx, cbor_data buffer, size_t len)
{
if (key_found) {
printf("Found the value: %*s\n", (int) len, buffer);
key_found = false;
} else if (len == strlen(key)) {
key_found = (memcmp(key, buffer, len) == 0);
}
}
int main(int argc, char * argv[])
{
FILE * f = fopen(argv[1], "rb");
fseek(f, 0, SEEK_END);
size_t length = (size_t)ftell(f);
fseek(f, 0, SEEK_SET);
unsigned char * buffer = malloc(length);
fread(buffer, length, 1, f);
struct cbor_callbacks callbacks = cbor_empty_callbacks;
struct cbor_decoder_result decode_result;
size_t bytes_read = 0;
callbacks.string = find_string;
while (bytes_read < length) {
decode_result = cbor_stream_decode(buffer + bytes_read,
length - bytes_read,
&callbacks, NULL);
bytes_read += decode_result.read;
}
fclose(f);
}
API¶
The data API is centered around cbor_item_t
, a generic handle for any CBOR item. There are functions to
- create items,
- set items’ data,
- parse serialized data into items,
- manage, move, and links item together.
The single most important thing to keep in mind is: cbor_item_t
is an opaque type and should only be manipulated using the appropriate functions! Think of it as an object.
The libcbor API closely follows the semantics outlined by CBOR standard. This part of the documentation provides a short overview of the CBOR constructs, as well as a general introduction to the libcbor API. Remaining reference can be found in the following files structured by data types.
The API is designed to allow both very tight control & flexibility and general convenience with sane defaults. [1] For example, client with very specific requirements (constrained environment, custom application protocol built on top of CBOR, etc.) may choose to take full control (and responsibility) of memory and data structures management by interacting directly with the decoder. Other clients might want to take control of specific aspects (streamed collections, hash maps storage), but leave other responsibilities to libcbor. More general clients might prefer to be abstracted away from all aforementioned details and only be presented complete data structures.
- libcbor provides
- stateless encoders and decoders
- encoding and decoding drivers, routines that coordinate encoding and decoding of complex structures
- data structures to represent and transform CBOR structures
- routines for building and manipulating these structures
- utilities for inspection and debugging
Types of items¶
Every cbor_item_t
has a cbor_type
associated with it - these constants correspond to the types specified by the CBOR standard:
-
enum type
cbor_type
¶ Specifies the Major type of cbor_item_t.
Values:
0 - positive integers
1 - negative integers
2 - byte strings
3 - strings
4 - arrays
5 - maps
6 - tags
7 - decimals and special values (true, false, nil, ...)
To find out the type of an item, one can use
Warning
doxygenfunction: Cannot find function “cbor_typeof” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Please note the distinction between functions like cbor_isa_uint()
and cbor_is_int()
. The following functions work solely with the major type value.
Binary queries¶
Alternatively, there are functions to query each particular type.
Warning
Passing an invalid cbor_item_t
reference to any of these functions results in undefined behavior.
Warning
doxygenfunction: Cannot find function “cbor_isa_uint” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_isa_negint” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_isa_bytestring” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_isa_string” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_isa_array” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_isa_map” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_isa_tag” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_isa_float_ctrl” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Logical queries¶
These functions provide information about the item type from a more high-level perspective
Warning
doxygenfunction: Cannot find function “cbor_is_int” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_is_float” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_is_bool” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_is_null” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_is_undef” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Memory management and reference counting¶
Due to the nature of its domain libcbor will need to work with heap memory. The stateless decoder and encoder don’t allocate any memory.
If you have specific requirements, you should consider rolling your own driver for the stateless API.
Using custom allocator¶
libcbor gives you with the ability to provide your own implementations of malloc
, realloc
, and free
. This can be useful if you are using a custom allocator throughout your application, or if you want to implement custom policies (e.g. tighter restrictions on the amount of allocated memory).
In order to use this feature, libcbor has to be compiled with the appropriate flags. You can verify the configuration using the CBOR_CUSTOM_ALLOC
macro. A simple usage might be as follows:
#if CBOR_CUSTOM_ALLOC
cbor_set_allocs(malloc, realloc, free);
#else
#error "libcbor built with support for custom allocation is required"
#endif
Warning
doxygenfunction: Cannot find function “cbor_set_allocs” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Reference counting¶
As CBOR items may require complex cleanups at the end of their lifetime, there is a reference counting mechanism in place. This also enables very simple GC when integrating libcbor into managed environment. Every item starts its life (by either explicit creation, or as a result of parsing) with reference count set to 1. When the refcount reaches zero, it will be destroyed.
Items containing nested items will be destroyed recursively - refcount of every nested item will be decreased by one.
The destruction is synchronous and renders any pointers to items with refcount zero invalid immediately after calling the cbor_decref()
.
Warning
doxygenfunction: Cannot find function “cbor_incref” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_decref” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_intermediate_decref” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_refcount” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
Warning
doxygenfunction: Cannot find function “cbor_move” in doxygen xml output for project “libcbor” from directory: ../build/doxygen/xml
-
cbor_item_t *
cbor_copy
(cbor_item_t *item)¶ Deep copy of an item.
All the reference counts in the new structure are set to one.
- Return
- new CBOR deep copy
- Parameters
item[borrow]
: item to copy
Decoding¶
The following diagram illustrates the relationship among different parts of libcbor from the decoding standpoint.
┌──────────────────────────────────────────────────────────────────────────────────────────────┐
│ │
│ Client application │
│ │
│ ┌────────────────────────────────────────────┘
│ │ ↕
│ │ ┌──────────────────────────────────────────┐
│ │ │ │
│ │ │ Manipulation routines │
│ │ │ │
│ ┌─────────────────────────────────────┘ └──────────────────────────────────────────┘
│ │ ↑ ↑ ↑ ↑
│ │ │ │ ┌─────────────╫──────────┬───────────────────┴─┐
│ │ │ CDS │ ║ │ │
│ │ │ │ PDS ║ PDS PDS
│ │ ↓ ↓ ↓ ↓ ↓ ↓
│ │ ┌─────────────────┐ ┌────────────────────┐ ┌────────────────────────────┐
│ │ │ │ │ │ │ │
│ │ │ Custom driver │ ↔ │ Streaming driver │ ↔ │ Default driver │ ↔ CD
│ │ │ │ │ │ │ │
└───────────┘ └─────────────────┘ └────────────────────┘ └────────────────────────────┘
↕ ↕ ↕ ↕
┌──────────────────────────────────────────────────────────────────────────────────────────────┐
│ │
│ Stateless event─driven decoder │
│ │
└──────────────────────────────────────────────────────────────────────────────────────────────┘
(PSD = Provided Data Structures, CDS = Custom Data Structures)
This section will deal with the API that is labeled as the “Default driver” in the diagram. That is, routines that decode complete libcbor data items
-
cbor_item_t *
cbor_load
(cbor_data source, size_t source_size, struct cbor_load_result *result)¶ Loads data item from a buffer.
- Return
- new CBOR item or
NULL
on failure. In that case,result
contains location and description of the error. - Parameters
source
: The buffersource_size
:result[out]
: Result indicator. CBOR_ERR_NONE on success
Associated data structures¶
-
enum type
cbor_error_code
¶ Possible decoding errors.
Values:
Memory error - item allocation failed.
Is it too big for your allocator?
Stack parsing algorithm failed.
- struct
High-level decoding result.
Public Members
-
struct cbor_error
cbor_load_result::
error
¶ Error indicator.
-
size_t
cbor_load_result::
read
¶ Number of bytes read.
-
struct cbor_error
- struct
High-level decoding error.
Public Members
-
size_t
cbor_error::
position
¶ Aproximate position.
-
cbor_error_code
cbor_error::
code
¶ Description.
-
size_t
Encoding¶
The easiest way to encode data items is using the cbor_serialize()
or cbor_serialize_alloc()
functions:
-
size_t
cbor_serialize
(const cbor_item_t *item, cbor_mutable_data buffer, size_t buffer_size)¶ Serialize the given item.
- Return
- Length of the result. 0 on failure.
- Parameters
item[borrow]
: A data itembuffer
: Buffer to serialize tobuffer_size
: Size of thebuffer
-
size_t
cbor_serialize_alloc
(const cbor_item_t *item, cbor_mutable_data *buffer, size_t *buffer_size)¶ Serialize the given item, allocating buffers as needed.
Warning
It is your responsibility to free the buffer using an appropriate
free
implementation.- Return
- Length of the result. 0 on failure, in which case
buffer
isNULL
. - Parameters
item[borrow]
: A data itembuffer[out]
: Buffer containing the resultbuffer_size[out]
: Size of thebuffer
Type-specific serializers¶
In case you know the type of the item you want to serialize beforehand, you can use one of the type-specific serializers.
Note
Unless compiled in debug mode, these do not verify the type. Passing an incorrect item will result in an undefined behavior.
-
size_t
cbor_serialize_uint
(const cbor_item_t *, cbor_mutable_data, size_t)¶ Serialize an uint.
- Return
- Length of the result. 0 on failure.
- Parameters
item[borrow]
: A uintbuffer
: Buffer to serialize tobuffer_size
: Size of thebuffer
-
size_t
cbor_serialize_negint
(const cbor_item_t *, cbor_mutable_data, size_t)¶ Serialize a negint.
- Return
- Length of the result. 0 on failure.
- Parameters
item[borrow]
: A negingbuffer
: Buffer to serialize tobuffer_size
: Size of thebuffer
-
size_t
cbor_serialize_bytestring
(const cbor_item_t *, cbor_mutable_data, size_t)¶ Serialize a bytestring.
- Return
- Length of the result. 0 on failure.
- Parameters
item[borrow]
: A bytestringbuffer
: Buffer to serialize tobuffer_size
: Size of thebuffer
-
size_t
cbor_serialize_string
(const cbor_item_t *, cbor_mutable_data, size_t)¶ Serialize a string.
- Return
- Length of the result. 0 on failure.
- Parameters
item[borrow]
: A stringbuffer
: Buffer to serialize tobuffer_size
: Size of thebuffer
-
size_t
cbor_serialize_array
(const cbor_item_t *, cbor_mutable_data, size_t)¶ Serialize an array.
- Return
- Length of the result. 0 on failure.
- Parameters
item[borrow]
: An arraybuffer
: Buffer to serialize tobuffer_size
: Size of thebuffer
-
size_t
cbor_serialize_map
(const cbor_item_t *, cbor_mutable_data, size_t)¶ Serialize a map.
- Return
- Length of the result. 0 on failure.
- Parameters
item[borrow]
: A mapbuffer
: Buffer to serialize tobuffer_size
: Size of thebuffer
-
size_t
cbor_serialize_tag
(const cbor_item_t *, cbor_mutable_data, size_t)¶ Serialize a tag.
- Return
- Length of the result. 0 on failure.
- Parameters
item[borrow]
: A tagbuffer
: Buffer to serialize tobuffer_size
: Size of thebuffer
-
size_t
cbor_serialize_float_ctrl
(const cbor_item_t *, cbor_mutable_data, size_t)¶ Serialize a.
- Return
- Length of the result. 0 on failure.
- Parameters
item[borrow]
: A float or ctrlbuffer
: Buffer to serialize tobuffer_size
: Size of thebuffer
Types 0 & 1 – Positive and negative integers¶
CBOR has two types of integers – positive (which may be effectively regarded as unsigned), and negative. There are four possible widths for an integer – 1, 2, 4, or 8 bytes. These are represented by
-
enum type
cbor_int_width
¶ Possible widths of CBOR_TYPE_UINT items.
Values:
Type 0 - positive integers¶
Corresponding cbor_type |
CBOR_TYPE_UINT |
Number of allocations | One per lifetime |
Storage requirements | sizeof(cbor_item_t) + sizeof(uint*_t) |
Note: once a positive integer has been created, its width cannot be changed.
Type 1 - negative integers¶
Corresponding cbor_type |
CBOR_TYPE_NEGINT |
Number of allocations | One per lifetime |
Storage requirements | sizeof(cbor_item_t) + sizeof(uint*_t) |
Note: once a positive integer has been created, its width cannot be changed.
Type 0 & 1¶
Due to their largely similar semantics, the following functions can be used for both Type 0 and Type 1 items. One can convert between them freely using the conversion functions.
Actual Type of the integer can be checked using item types API.
An integer item is created with one of the four widths. Because integers’ storage is bundled together with the handle, the width cannot be changed over its lifetime.
Warning
Due to the fact that CBOR negative integers represent integers in the range \([-1, -2^N]\), cbor_set_uint
API is somewhat counter-intuitive as the resulting logical value is 1 less. This behavior is necessary in order to permit uniform manipulation with the full range of permitted values. For example, the following snippet
cbor_item_t * item = cbor_new_int8();
cbor_mark_negint(item);
cbor_set_uint8(0);
will produce an item with the logical value of \(-1\). There is, however, an upside to this as well: There is only one representation of zero.
Building new items¶
-
cbor_item_t *
cbor_build_uint8
(uint8_t value)¶ Constructs a new positive integer.
- Return
- new positive integer
- Parameters
value
: the value to use
-
cbor_item_t *
cbor_build_uint16
(uint16_t value)¶ Constructs a new positive integer.
- Return
- new positive integer
- Parameters
value
: the value to use
-
cbor_item_t *
cbor_build_uint32
(uint32_t value)¶ Constructs a new positive integer.
- Return
- new positive integer
- Parameters
value
: the value to use
-
cbor_item_t *
cbor_build_uint64
(uint64_t value)¶ Constructs a new positive integer.
- Return
- new positive integer
- Parameters
value
: the value to use
Retrieving values¶
-
uint8_t
cbor_get_uint8
(const cbor_item_t *item)¶ Extracts the integer value.
- Return
- the value
- Parameters
item[borrow]
: positive or negative integer
-
uint16_t
cbor_get_uint16
(const cbor_item_t *item)¶ Extracts the integer value.
- Return
- the value
- Parameters
item[borrow]
: positive or negative integer
-
uint32_t
cbor_get_uint32
(const cbor_item_t *item)¶ Extracts the integer value.
- Return
- the value
- Parameters
item[borrow]
: positive or negative integer
-
uint64_t
cbor_get_uint64
(const cbor_item_t *item)¶ Extracts the integer value.
- Return
- the value
- Parameters
item[borrow]
: positive or negative integer
Setting values¶
-
void
cbor_set_uint8
(cbor_item_t *item, uint8_t value)¶ Assigns the integer value.
- Parameters
item[borrow]
: positive or negative integer itemvalue
: the value to assign. For negative integer, the logical value is-value - 1
-
void
cbor_set_uint16
(cbor_item_t *item, uint16_t value)¶ Assigns the integer value.
- Parameters
item[borrow]
: positive or negative integer itemvalue
: the value to assign. For negative integer, the logical value is-value - 1
-
void
cbor_set_uint32
(cbor_item_t *item, uint32_t value)¶ Assigns the integer value.
- Parameters
item[borrow]
: positive or negative integer itemvalue
: the value to assign. For negative integer, the logical value is-value - 1
-
void
cbor_set_uint64
(cbor_item_t *item, uint64_t value)¶ Assigns the integer value.
- Parameters
item[borrow]
: positive or negative integer itemvalue
: the value to assign. For negative integer, the logical value is-value - 1
Dealing with width¶
-
cbor_int_width
cbor_int_get_width
(const cbor_item_t *item)¶ Queries the integer width.
- Return
- the width
- Parameters
item[borrow]
: positive or negative integer item
Dealing with signedness¶
-
void
cbor_mark_uint
(cbor_item_t *item)¶ Marks the integer item as a positive integer.
The data value is not changed
- Parameters
item[borrow]
: positive or negative integer item
-
void
cbor_mark_negint
(cbor_item_t *item)¶ Marks the integer item as a negative integer.
The data value is not changed
- Parameters
item[borrow]
: positive or negative integer item
Creating new items¶
-
cbor_item_t *
cbor_new_int8
()¶ Allocates new integer with 1B width.
The width cannot be changed once allocated
- Return
- new positive integer. The value is not initialized.
-
cbor_item_t *
cbor_new_int16
()¶ Allocates new integer with 2B width.
The width cannot be changed once allocated
- Return
- new positive integer. The value is not initialized.
-
cbor_item_t *
cbor_new_int32
()¶ Allocates new integer with 4B width.
The width cannot be changed once allocated
- Return
- new positive integer. The value is not initialized.
-
cbor_item_t *
cbor_new_int64
()¶ Allocates new integer with 8B width.
The width cannot be changed once allocated
- Return
- new positive integer. The value is not initialized.
Type 2 – Byte strings¶
CBOR byte strings are just (ordered) series of bytes without further interpretation (unless there is a tag). Byte string’s length may or may not be known during encoding. These two kinds of byte strings can be distinguished using cbor_bytestring_is_definite()
and cbor_bytestring_is_indefinite()
respectively.
In case a byte string is indefinite, it is encoded as a series of definite byte strings. These are called “chunks”. For example, the encoded item
0xf5 Start indefinite byte string
0x41 Byte string (1B long)
0x00
0x41 Byte string (1B long)
0xff
0xff "Break" control token
represents two bytes, 0x00
and 0xff
. This on one hand enables streaming messages even before they are fully generated, but on the other hand it adds more complexity to the client code.
Corresponding cbor_type |
CBOR_TYPE_BYTESTRING |
Number of allocations (definite) | One plus any manipulations with the data |
Number of allocations (indefinite) | One plus logarithmically many reallocations relative to chunk count |
Storage requirements (definite) | sizeof(cbor_item_t) + length(handle) |
Storage requirements (indefinite) | sizeof(cbor_item_t) * (1 + chunk_count) + chunks |
Streaming indefinite byte strings¶
Please refer to Streaming & indefinite items.
Getting metadata¶
-
size_t
cbor_bytestring_length
(const cbor_item_t *item)¶ Returns the length of the binary data.
For definite byte strings only
- Return
- length of the binary data. Zero if no chunk has been attached yet
- Parameters
item[borrow]
: a definite bytestring
-
bool
cbor_bytestring_is_definite
(const cbor_item_t *item)¶ Is the byte string definite?
- Return
- Is the byte string definite?
- Parameters
item[borrow]
: a byte string
-
bool
cbor_bytestring_is_indefinite
(const cbor_item_t *item)¶ Is the byte string indefinite?
- Return
- Is the byte string indefinite?
- Parameters
item[borrow]
: a byte string
-
size_t
cbor_bytestring_chunk_count
(const cbor_item_t *item)¶ Get the number of chunks this string consist of.
- Return
- The chunk count. 0 for freshly created items.
- Parameters
item[borrow]
: A indefinite bytestring
Reading data¶
-
cbor_mutable_data
cbor_bytestring_handle
(const cbor_item_t *item)¶ Get the handle to the binary data.
Definite items only. Modifying the data is allowed. In that case, the caller takes responsibility for the effect on items this item might be a part of
- Return
- The address of the binary data.
NULL
if no data have been assigned yet. - Parameters
item[borrow]
: A definite byte string
-
cbor_item_t **
cbor_bytestring_chunks_handle
(const cbor_item_t *item)¶ Get the handle to the array of chunks.
Manipulations with the memory block (e.g. sorting it) are allowed, but the validity and the number of chunks must be retained.
- Return
- array of cbor_bytestring_chunk_count definite bytestrings
- Parameters
item[borrow]
: A indefinite byte string
Creating new items¶
-
cbor_item_t *
cbor_new_definite_bytestring
()¶ Creates a new definite byte string.
The handle is initialized to
NULL
and length to 0- Return
- new definite bytestring.
NULL
on malloc failure.
-
cbor_item_t *
cbor_new_indefinite_bytestring
()¶ Creates a new indefinite byte string.
The chunks array is initialized to
NULL
and chunkcount to 0- Return
- new indefinite bytestring.
NULL
on malloc failure.
Building items¶
-
cbor_item_t *
cbor_build_bytestring
(cbor_data handle, size_t length)¶ Creates a new byte string and initializes it.
The
handle
will be copied to a newly allocated block- Return
- A new byte string with content
handle
.NULL
on malloc failure. - Parameters
handle
: Block of binary datalength
: Length ofdata
Manipulating existing items¶
-
void cbor_bytestring_set_handle(cbor_item_t * item, cbor_mutable_data restrict data, size_t length)
Set the handle to the binary data.
- Parameters
item[borrow]
: A definite byte stringdata
: The memory block. The caller gives up the ownership of the block. libcbor will deallocate it when appropriate using its free functionlength
: Length of the data block
-
bool
cbor_bytestring_add_chunk
(cbor_item_t *item, cbor_item_t *chunk)¶ Appends a chunk to the bytestring.
Indefinite byte strings only.
May realloc the chunk storage.
- Return
- true on success, false on realloc failure. In that case, the refcount of
chunk
is not increased and theitem
is left intact. - Parameters
item[borrow]
: An indefinite byte stringitem[incref]
: A definite byte string
Type 3 – UTF-8 strings¶
CBOR strings work in much the same ways as Type 2 – Byte strings.
Corresponding cbor_type |
CBOR_TYPE_STRING |
Number of allocations (definite) | One plus any manipulations with the data |
Number of allocations (indefinite) | One plus logarithmically many reallocations relative to chunk count |
Storage requirements (definite) | sizeof(cbor_item_t) + length(handle) |
Storage requirements (indefinite) | sizeof(cbor_item_t) * (1 + chunk_count) + chunks |
Streaming indefinite strings¶
Please refer to Streaming & indefinite items.
UTF-8 encoding validation¶
libcbor considers UTF-8 encoding validity to be a part of the well-formedness notion of CBOR and therefore invalid UTF-8 strings will be rejected by the parser. Strings created by the user are not checked.
Getting metadata¶
-
size_t
cbor_string_length
(const cbor_item_t *item)¶ Returns the length of the underlying string.
For definite strings only
- Return
- length of the string. Zero if no chunk has been attached yet
- Parameters
item[borrow]
: a definite string
-
bool
cbor_string_is_definite
(const cbor_item_t *item)¶ Is the string definite?
- Return
- Is the string definite?
- Parameters
item[borrow]
: a string
-
bool
cbor_string_is_indefinite
(const cbor_item_t *item)¶ Is the string indefinite?
- Return
- Is the string indefinite?
- Parameters
item[borrow]
: a string
-
size_t
cbor_string_chunk_count
(const cbor_item_t *item)¶ Get the number of chunks this string consist of.
- Return
- The chunk count. 0 for freshly created items.
- Parameters
item[borrow]
: A indefinite string
Reading data¶
-
cbor_mutable_data
cbor_string_handle
(const cbor_item_t *item)¶ Get the handle to the underlying string.
Definite items only. Modifying the data is allowed. In that case, the caller takes responsibility for the effect on items this item might be a part of
- Return
- The address of the underlying string.
NULL
if no data have been assigned yet. - Parameters
item[borrow]
: A definite string
-
cbor_item_t **
cbor_string_chunks_handle
(const cbor_item_t *item)¶ Get the handle to the array of chunks.
Manipulations with the memory block (e.g. sorting it) are allowed, but the validity and the number of chunks must be retained.
- Return
- array of cbor_string_chunk_count definite strings
- Parameters
item[borrow]
: A indefinite string
Creating new items¶
-
cbor_item_t *
cbor_new_definite_string
()¶ Creates a new definite string.
The handle is initialized to
NULL
and length to 0- Return
- new definite string.
NULL
on malloc failure.
-
cbor_item_t *
cbor_new_indefinite_string
()¶ Creates a new indefinite string.
The chunks array is initialized to
NULL
and chunkcount to 0- Return
- new indefinite string.
NULL
on malloc failure.
Building items¶
-
cbor_item_t *
cbor_build_string
(const char *val)¶ Creates a new string and initializes it.
The
val
will be copied to a newly allocated block- Return
- A new string with content
handle
.NULL
on malloc failure. - Parameters
val
: A null-terminated UTF-8 string
Manipulating existing items¶
-
void cbor_string_set_handle(cbor_item_t * item, cbor_mutable_data restrict data, size_t length)
Set the handle to the underlying string.
Warning
Using a pointer to a stack allocated constant is a common mistake. Lifetime of the string will expire when it goes out of scope and the CBOR item will be left inconsistent.
- Parameters
item[borrow]
: A definite stringdata
: The memory block. The caller gives up the ownership of the block. libcbor will deallocate it when appropriate using its free functionlength
: Length of the data block
-
bool
cbor_string_add_chunk
(cbor_item_t *item, cbor_item_t *chunk)¶ Appends a chunk to the string.
Indefinite strings only.
May realloc the chunk storage.
- Return
- true on success. false on realloc failure. In that case, the refcount of
chunk
is not increased and theitem
is left intact. - Parameters
item[borrow]
: An indefinite stringitem[incref]
: A definite string
Type 4 – Arrays¶
CBOR arrays, just like byte strings and strings, can be encoded either as definite, or as indefinite.
Corresponding cbor_type |
CBOR_TYPE_ARRAY |
Number of allocations (definite) | Two plus any manipulations with the data |
Number of allocations (indefinite) | Two plus logarithmically many reallocations relative to additions |
Storage requirements (definite) | (sizeof(cbor_item_t) + 1) * size |
Storage requirements (indefinite) | <= sizeof(cbor_item_t) + sizeof(cbor_item_t) * size * BUFFER_GROWTH |
Examples¶
0x9f Start indefinite array
0x01 Unsigned integer 1
0xff "Break" control token
0x9f Start array, 1B length follows
0x20 Unsigned integer 32
... 32 items follow
Streaming indefinite arrays¶
Please refer to Streaming & indefinite items.
Getting metadata¶
-
size_t
cbor_array_size
(const cbor_item_t *item)¶ Get the number of members.
- Return
- The number of members
- Parameters
item[borrow]
: An array
-
size_t
cbor_array_allocated
(const cbor_item_t *item)¶ Get the size of the allocated storage.
- Return
- The size of the allocated storage (number of items)
- Parameters
item[borrow]
: An array
-
bool
cbor_array_is_definite
(const cbor_item_t *item)¶ Is the array definite?
- Return
- Is the array definite?
- Parameters
item[borrow]
: An array
-
bool
cbor_array_is_indefinite
(const cbor_item_t *item)¶ Is the array indefinite?
- Return
- Is the array indefinite?
- Parameters
item[borrow]
: An array
Reading data¶
-
cbor_item_t **
cbor_array_handle
(const cbor_item_t *item)¶ Get the array contents.
The items may be reordered and modified as long as references remain consistent.
- Return
- cbor_array_size items
- Parameters
item[borrow]
: An array
-
cbor_item_t *
cbor_array_get
(const cbor_item_t *item, size_t index)¶ Get item by index.
- Return
- incref The item, or
NULL
in case of boundary violation - Parameters
item[borrow]
: An arrayindex
: The index
Creating new items¶
-
cbor_item_t *
cbor_new_definite_array
(const size_t size)¶ Create new definite array.
- Return
- new array or
NULL
upon malloc failure - Parameters
size
: Number of slots to preallocate
-
cbor_item_t *
cbor_new_indefinite_array
()¶ Create new indefinite array.
- Return
- new array or
NULL
upon malloc failure
Modifying items¶
-
bool
cbor_array_push
(cbor_item_t *array, cbor_item_t *pushee)¶ Append to the end.
For indefinite items, storage may be realloacted. For definite items, only the preallocated capacity is available.
- Return
- true on success, false on failure
- Parameters
array[borrow]
: An arraypushee[incref]
: The item to push
-
bool
cbor_array_replace
(cbor_item_t *item, size_t index, cbor_item_t *value)¶ Replace item at an index.
The item being replace will be cbor_decref ‘ed.
- Return
- true on success, false on allocation failure.
- Parameters
item[borrow]
: An arrayvalue[incref]
: The item to assignindex
: The index
-
bool
cbor_array_set
(cbor_item_t *item, size_t index, cbor_item_t *value)¶ Set item by index.
Creating arrays with holes is not possible
- Return
- true on success, false on allocation failure.
- Parameters
item[borrow]
: An arrayvalue[incref]
: The item to assignindex
: The index
Type 5 – Maps¶
CBOR maps are the plain old associate hash maps known from JSON and many other formats and languages, with one exception: any CBOR data item can be a key, not just strings. This is somewhat unusual and you, as an application developer, should keep that in mind.
Maps can be either definite or indefinite, in much the same way as Type 4 – Arrays.
Corresponding cbor_type |
CBOR_TYPE_MAP |
Number of allocations (definite) | Two plus any manipulations with the data |
Number of allocations (indefinite) | Two plus logarithmically many reallocations relative to additions |
Storage requirements (definite) | sizeof(cbor_pair) * size + sizeof(cbor_item_t) |
Storage requirements (indefinite) | <= sizeof(cbor_item_t) + sizeof(cbor_pair) * size * BUFFER_GROWTH |
Streaming maps¶
Please refer to Streaming & indefinite items.
Getting metadata¶
-
size_t
cbor_map_size
(const cbor_item_t *item)¶ Get the number of pairs.
- Return
- The number of pairs
- Parameters
item[borrow]
: A map
-
size_t
cbor_map_allocated
(const cbor_item_t *item)¶ Get the size of the allocated storage.
- Return
- Allocated storage size (as the number of cbor_pair items)
- Parameters
item[borrow]
: A map
-
bool
cbor_map_is_definite
(const cbor_item_t *item)¶ Is this map definite?
- Return
- Is this map definite?
- Parameters
item[borrow]
: A map
-
bool
cbor_map_is_indefinite
(const cbor_item_t *item)¶ Is this map indefinite?
- Return
- Is this map indefinite?
- Parameters
item[borrow]
: A map
Reading data¶
-
struct cbor_pair *
cbor_map_handle
(const cbor_item_t *item)¶ Get the pairs storage.
- Return
- Array of cbor_map_size pairs. Manipulation is possible as long as references remain valid.
- Parameters
item[borrow]
: A map
Creating new items¶
-
cbor_item_t *
cbor_new_definite_map
(const size_t size)¶ Create a new definite map.
- Return
- new definite map.
NULL
on malloc failure. - Parameters
size
: The number of slots to preallocate
-
cbor_item_t *
cbor_new_indefinite_map
()¶ Create a new indefinite map.
- Return
- new definite map.
NULL
on malloc failure. - Parameters
size
: The number of slots to preallocate
Modifying items¶
-
bool
cbor_map_add
(cbor_item_t *item, struct cbor_pair pair)¶ Add a pair to the map.
For definite maps, items can only be added to the preallocated space. For indefinite maps, the storage will be expanded as needed
- Return
true
on success,false
if either reallocation failed or the preallcoated storage is full- Parameters
item[borrow]
: A mappair[incref]
: The key-value pair to add (incref is member-wise)
Type 6 – Semantic tags¶
Tag are additional metadata that can be used to extend or specialize the meaning or interpretation of the other data items.
For example, one might tag an array of numbers to communicate that it should be interpreted as a vector.
Please consult the official IANA repository of CBOR tags before inventing new ones.
-
cbor_item_t *
cbor_new_tag
(uint64_t value)¶ Create a new tag.
- Return
- new tag. Item reference is
NULL
. - Parameters
value
: The tag value. Please consult the tag repository
-
cbor_item_t *
cbor_tag_item
(const cbor_item_t *item)¶ Get the tagged item.
- Return
- incref the tagged item
- Parameters
item[borrow]
: A tag
-
uint64_t
cbor_tag_value
(const cbor_item_t *item)¶ Get tag value.
- Return
- The tag value. Please consult the tag repository
- Parameters
item[borrow]
: A tag
-
void
cbor_tag_set_item
(cbor_item_t *item, cbor_item_t *tagged_item)¶ Set the tagged item.
- Parameters
item[borrow]
: A tagtagged_item[incref]
: The item to tag
Type 7 – Floats & control tokens¶
This type combines two completely unrelated types of items – floating point numbers and special values such as true, false, null, etc. We refer to these special values as ‘control values’ or ‘ctrls’ for short throughout the code.
Just like integers, they have different possible width (resulting in different value ranges and precisions).
-
enum type
cbor_float_width
¶ Possible widths of CBOR_TYPE_FLOAT_CTRL items.
Values:
Internal use - ctrl and special values.
Half float.
Single float.
Double.
Corresponding cbor_type |
CBOR_TYPE_FLOAT_CTRL |
Number of allocations | One per lifetime |
Storage requirements | sizeof(cbor_item_t) + 1/4/8 |
Getting metadata¶
-
bool
cbor_float_ctrl_is_ctrl
(const cbor_item_t *item)¶ Is this a ctrl value?
- Return
- Is this a ctrl value?
- Parameters
item[borrow]
: A float or ctrl item
-
cbor_float_width
cbor_float_get_width
(const cbor_item_t *item)¶ Get the float width.
- Return
- The width.
- Parameters
item[borrow]
: A float or ctrl item
-
bool
cbor_ctrl_is_bool
(const cbor_item_t *item)¶ Is this ctrl item a boolean?
- Return
- Is this ctrl item a boolean?
- Parameters
item[borrow]
: A ctrl item
Reading data¶
-
float
cbor_float_get_float2
(const cbor_item_t *item)¶ Get a half precision float.
The item must have the corresponding width
- Return
- half precision value
- Parameters
borrow]
: A half precision float
-
float
cbor_float_get_float4
(const cbor_item_t *item)¶ Get a single precision float.
The item must have the corresponding width
- Return
- single precision value
- Parameters
borrow]
: A signle precision float
-
double
cbor_float_get_float8
(const cbor_item_t *item)¶ Get a double precision float.
The item must have the corresponding width
- Return
- double precision value
- Parameters
borrow]
: A double precision float
-
double
cbor_float_get_float
(const cbor_item_t *item)¶ Get the float value represented as double.
Can be used regardless of the width.
- Return
- double precision value
- Parameters
borrow]
: Any float
-
uint8_t
cbor_ctrl_value
(const cbor_item_t *item)¶ Reads the control value.
- Return
- the simple value
- Parameters
item[borrow]
: A ctrl item
Creating new items¶
-
cbor_item_t *
cbor_new_ctrl
()¶ Constructs a new ctrl item.
The width cannot be changed once the item is created
- Return
- new 1B ctrl
-
cbor_item_t *
cbor_new_float2
()¶ Constructs a new float item.
The width cannot be changed once the item is created
- Return
- new 2B float
-
cbor_item_t *
cbor_new_float4
()¶ Constructs a new float item.
The width cannot be changed once the item is created
- Return
- new 4B float
-
cbor_item_t *
cbor_new_float8
()¶ Constructs a new float item.
The width cannot be changed once the item is created
- Return
- new 8B float
-
cbor_item_t *
cbor_new_null
()¶ Constructs new null ctrl item.
- Return
- new null ctrl item
-
cbor_item_t *
cbor_new_undef
()¶ Constructs new under ctrl item.
- Return
- new under ctrl item
Building items¶
-
cbor_item_t *
cbor_build_bool
(bool value)¶ Constructs new boolean ctrl item.
- Return
- new boolen ctrl item
- Parameters
value
: The value to use
-
cbor_item_t *
cbor_build_ctrl
(uint8_t value)¶ Constructs a ctrl item.
- Return
- new ctrl item
- Parameters
value
: the value to use
-
cbor_item_t *
cbor_build_float2
(float value)¶ Constructs a new float.
- Return
- new float
- Parameters
value
: the value to use
-
cbor_item_t *
cbor_build_float4
(float value)¶ Constructs a new float.
- Return
- new float
- Parameters
value
: the value to use
-
cbor_item_t *
cbor_build_float8
(double value)¶ Constructs a new float.
- Return
- new float
- Parameters
value
: the value to use
Manipulating existing items¶
-
void
cbor_set_ctrl
(cbor_item_t *item, uint8_t value)¶ Assign a control value.
Warning
It is possible to produce an invalid CBOR value by assigning a invalid value using this mechanism. Please consult the standard before use.
- Parameters
item[borrow]
: A ctrl itemvalue
: The simple value to assign. Please consult the standard for allowed values
-
void
cbor_set_float2
(cbor_item_t *item, float value)¶ Assigns a float value.
- Parameters
item[borrow]
: A half precision floatvalue
: The value to assign
-
void
cbor_set_float4
(cbor_item_t *item, float value)¶ Assigns a float value.
- Parameters
item[borrow]
: A single precision floatvalue
: The value to assign
-
void
cbor_set_float8
(cbor_item_t *item, double value)¶ Assigns a float value.
- Parameters
item[borrow]
: A double precision floatvalue
: The value to assign
[1] | http://softwareengineering.vazexqi.com/files/pattern.html |
Streaming & indefinite items¶
CBOR strings, byte strings, arrays, and maps can be encoded as indefinite, meaning their length or size is not specified. Instead, they are divided into chunks (strings, byte strings), or explicitly terminated (arrays, maps).
This is one of the most important (and due to poor implementations, underutilized) features of CBOR. It enables low-overhead streaming just about anywhere without dealing with channels or pub/sub mechanism. It is, however, important to recognize that CBOR streaming is not a substitute for Websockets [1] and similar technologies.
[1] | RFC 6455 |
Decoding¶
Another way to decode data using libcbor is to specify a callbacks that will be invoked when upon finding certain items in the input. This service is provided by
-
struct cbor_decoder_result
cbor_stream_decode
(cbor_data buffer, size_t buffer_size, const struct cbor_callbacks *callbacks, void *context)¶ Stateless decoder.
Will try parsing the
buffer
and will invoke the appropriate callback on success. Decodes one item at a time. No memory allocations occur.- Parameters
buffer
: Input bufferbuffer_size
: Length of the buffercallbacks
: The callback bundlecontext
: An arbitrary pointer to allow for maintaining context.
To get started, you might want to have a look at the simple streaming example:
#include "cbor.h"
#include <stdio.h>
#include <string.h>
/*
* Illustrates how one might skim through a map (which is assumed to have
* string keys and values only), looking for the value of a specific key
*
* Use the examples/data/map.cbor input to test this.
*/
const char * key = "a secret key";
bool key_found = false;
void find_string(void * _ctx, cbor_data buffer, size_t len)
{
if (key_found) {
printf("Found the value: %*s\n", (int) len, buffer);
key_found = false;
} else if (len == strlen(key)) {
key_found = (memcmp(key, buffer, len) == 0);
}
}
int main(int argc, char * argv[])
{
FILE * f = fopen(argv[1], "rb");
fseek(f, 0, SEEK_END);
size_t length = (size_t)ftell(f);
fseek(f, 0, SEEK_SET);
unsigned char * buffer = malloc(length);
fread(buffer, length, 1, f);
struct cbor_callbacks callbacks = cbor_empty_callbacks;
struct cbor_decoder_result decode_result;
size_t bytes_read = 0;
callbacks.string = find_string;
while (bytes_read < length) {
decode_result = cbor_stream_decode(buffer + bytes_read,
length - bytes_read,
&callbacks, NULL);
bytes_read += decode_result.read;
}
free(buffer);
fclose(f);
}
The callbacks are defined by
- struct
Callback bundle passed to the decoder.
Public Members
-
cbor_int8_callback
cbor_callbacks::
uint8
¶ Unsigned int.
-
cbor_int16_callback
cbor_callbacks::
uint16
¶ Unsigned int.
-
cbor_int32_callback
cbor_callbacks::
uint32
¶ Unsigned int.
-
cbor_int64_callback
cbor_callbacks::
uint64
¶ Unsigned int.
-
cbor_int64_callback
cbor_callbacks::
negint64
¶ Negative int.
-
cbor_int32_callback
cbor_callbacks::
negint32
¶ Negative int.
-
cbor_int16_callback
cbor_callbacks::
negint16
¶ Negative int.
-
cbor_int8_callback
cbor_callbacks::
negint8
¶ Negative int.
-
cbor_simple_callback
cbor_callbacks::
byte_string_start
¶ Definite byte string.
-
cbor_string_callback
cbor_callbacks::
byte_string
¶ Indefinite byte string start.
-
cbor_string_callback
cbor_callbacks::
string
¶ Definite string.
-
cbor_simple_callback
cbor_callbacks::
string_start
¶ Indefinite string start.
-
cbor_simple_callback
cbor_callbacks::
indef_array_start
¶ Definite array.
-
cbor_collection_callback
cbor_callbacks::
array_start
¶ Indefinite array.
-
cbor_simple_callback
cbor_callbacks::
indef_map_start
¶ Definite map.
-
cbor_collection_callback
cbor_callbacks::
map_start
¶ Indefinite map.
-
cbor_int64_callback
cbor_callbacks::
tag
¶ Tags.
-
cbor_float_callback
cbor_callbacks::
float2
¶ Half float.
-
cbor_double_callback
cbor_callbacks::
float8
¶ Single float.
-
cbor_float_callback
cbor_callbacks::
float4
¶ Double float.
-
cbor_simple_callback
cbor_callbacks::
undefined
¶ Undef.
-
cbor_simple_callback
cbor_callbacks::
null
¶ Null.
-
cbor_bool_callback
cbor_callbacks::
boolean
¶ Bool.
-
cbor_simple_callback
cbor_callbacks::
indef_break
¶ Indefinite item break.
-
cbor_int8_callback
When building custom sets of callbacks, feel free to start from
-
const struct cbor_callbacks
cbor_empty_callbacks
¶ Dummy callback bundle - does nothing.
Callback types definition¶
- typedef
Callback prototype.
- typedef
Callback prototype.
- typedef
Callback prototype.
- typedef
Callback prototype.
- typedef
Callback prototype.
- typedef
Callback prototype.
- typedef
Callback prototype.
- typedef
Callback prototype.
- typedef
Callback prototype.
- typedef
Callback prototype.
Encoding¶
TODO
Tests¶
Unit tests¶
There is a comprehensive test suite employing CMocka. You can run all of them using ctest
in the build directory. Individual tests are themselves runnable. Please refer to CTest documentation for detailed information on how to specify particular subset of tests.
Testing for memory leaks¶
Every release is tested for memory correctness. You can run these tests by passing the -T memcheck
flag to ctest
. [1]
[1] | Project should be configured with -DCMAKE_BUILD_TYPE=Debug to obtain meaningful description of location of the leak. You might also need --dsymutil=yes on OS X. |
Code coverage¶
Every release is inspected using GCOV/LCOV. Platform-independent code should be fully covered by the test suite. Simply run
make coverage
or alternatively run lcov
by hand using
lcov --capture --directory . --output-file coverage.info
genhtml coverage.info --output-directory out
Fuzz testing¶
Every release is tested using a fuzz test. In this test, a huge buffer filled with random data is passed to the decoder. We require that it either succeeds or fail with a sensible error, without leaking any memory. This is intended to simulate real-world situations where data received from the network are CBOR-decoded before any further processing.
RFC conformance¶
libcbor is, generally speaking, very faithful implementation of RFC 7049. There are, however, some limitations imposed by technical constraints.
Bytestring length¶
There is no explicit limitation of indefinite length byte strings. [1] libcbor will not handle byte strings with more chunks than the maximum value of size_t
. On any sane platform, such string would not fit in the memory anyway. It is, however, possible to process arbitrarily long strings and byte strings using the streaming decoder.
[1] | http://tools.ietf.org/html/rfc7049#section-2.2.2 |
“Half-precision” IEEE 754 floats¶
As of C99 and even C11, there is no standard implementation for 2 bytes floats. libcbor packs them as a double
. When encoding, libcbor selects the appropriate wire representation based on metadata and the actual value. This applies both to canonical and normal mode.
Internal mechanics¶
Internal workings of libcbor are mostly derived from the specification. The purpose of this document is to describe technical choices made during design & implementation and to explicate the reasoning behind those choices.
Terminology¶
MTB | Major Type Byte | http://tools.ietf.org/html/rfc7049#section-2.1 |
DST | Dynamically Sized Type | Type whose storage requirements cannot be determined during compilation (originated in the Rust community) |
Conventions¶
API symbols start with cbor_
or CBOR_
prefix, internal symbols have _cbor_
or _CBOR_
prefix.
General notes on the API design¶
The API design has two main driving priciples:
- Let the client manage the memory as much as possible
- Behave exactly as specified by the standard
Combining these two principles in practice turns out to be quite difficult. Indefinite-length strings, arrays, and maps require client to handle every fixed-size chunk explicitly in order to
ensure the client never runs out of memory due to libcbor
use
realloc()
sparsely and predictably [1]
- provide strong guarantees about its usage (to prevent latency spikes)
- provide APIs to avoid
realloc()
altogetherallow proper handling of (streamed) data bigger than available memory
[1] Reasonable handling of DSTs requires reallocation if the API is to remain sane.
Coding style¶
This code loosely follows the Linux kernel coding style. Tabs are tabs, and they are 4 characters wide.
Memory layout¶
CBOR is very dynamic in the sense that it contains many data elements of variable length, sometimes even indefinite length. This section describes internal representation of all CBOR data types.
Generally speaking, data items consist of three parts:
- a generic
handle
,- the associated
metadata
,- and the
actual data
-
type
cbor_item_t
¶ Represents the item. Used as an opaque type
-
size_t
refcount
¶ Reference counter. Used by
cbor_decref()
,cbor_incref()
-
union cbor_item_metadata
metadata
¶ Union discriminated by
cbor_item_t.type
. Contains type-specific metadata
-
unsigned char *
data
¶ Contains pointer to the actual data. Small, fixed size items (Types 0 & 1 – Positive and negative integers, Type 6 – Semantic tags, Type 7 – Floats & control tokens) are allocated as a single memory block.
Consider the following snippet
cbor_item_t * item = cbor_new_int8();
then the memory is laid out as follows
+-----------+---------------+---------------+-----------------------------------++-----------+ | | | | || | | type | refcount | metadata | data || uint8_t | | | | | (= item + sizeof(cbor_item_t)) || | +-----------+---------------+---------------+-----------------------------------++-----------+ ^ ^ | | +--- item +--- item->data
Dynamically sized types (Type 2 – Byte strings, Type 3 – UTF-8 strings, Type 4 – Arrays, Type 5 – Maps) may store handle and data in separate locations. This enables creating large items (e.g byte strings) without
realloc()
or copying large blocks of memory. One simply attaches the correct pointer to the handle.
-
size_t
-
union cbor_item_metadata
-
struct _cbor_int_metadata int_metadata;
Used both by both Types 0 & 1 – Positive and negative integers
-
struct _cbor_bytestring_metadata bytestring_metadata;
-
struct _cbor_string_metadata string_metadata;
-
struct _cbor_array_metadata array_metadata;
-
struct _cbor_map_metadata map_metadata;
-
struct _cbor_tag_metadata tag_metadata;
-
struct _cbor_float_ctrl_metadata float_ctrl_metadata;
-
Changelog¶
Next¶
0.4.0 (2015-12-25)¶
Breaks build & header compatibility due to: - Improved build configuration and feature check macros - Endianess configuration fixes (by Erwin Kroon (@ekroon) and David Grigsby (@dgrigsby)) - pkg-config compatibility (by Vincent Bernat) - enable use of versioned SONAME (by Vincent Bernat) - better fuzzer (wasn’t random until now, ooops)
0.3.1 (2015-05-21)¶
- documentation and comments improvements, mostly for the API reference
0.3.0 (2015-05-21)¶
- Fixes, polishing, niceties across the code base
- Updated examples
- cbor_copy
- cbor_build_negint8, 16, 32, 64, matching asserts
- cbor_build_stringn
- cbor_build_tag
- cbor_build_float2, ...
0.2.1 (2015-05-17)¶
- C99 support
0.2.0 (2015-05-17)¶
- cbor_ctrl_bool -> cbor_ctrl_is_bool
- Added cbor_array_allocated & map equivalent
- Overhauled endianess conversion - ARM now works as expected
- ‘sort.c’ example added
- Significantly improved and doxyfied documentation
0.1.0 (2015-05-06)¶
The initial release, yay!
Development¶
Development dependencies¶
- CMocka (testing)
- Python and pip (Sphinx platform)
- Doxygen
- Sphinx (documentation)
- There are some Ruby scripts in
misc
- Valgrind (memory correctness & profiling)
- GCOV/LCOV (test coverage)
Building cmocka¶
# Starting from libcbor source directory
git submodule update --init test/cmocka
cd test
mkdir cmocka_build && cd cmocka_build
cmake ../cmocka
make -j 4
make install
Installing sphinx¶
pip install sphinx
pip install sphinx_rtd_theme
pip install https://github.com/lepture/python-livereload/archive/master.zip
pip install sphinx-autobuild
Further instructions on configuring advanced features can be found at http://read-the-docs.readthedocs.org/en/latest/install.html.
Live preview of docs¶
cd doc
make livehtml